Interaction of 4-imidazolemethanol with a copper electrode revealed by isotope-edited SERS and theoretical modeling.

نویسندگان

  • Ieva Matulaitienė
  • Eglė Pociūtė
  • Zenonas Kuodis
  • Olegas Eicher-Lorka
  • Gediminas Niaura
چکیده

Adsorption of 4-imidazolemethanol (ImMeOH) on a copper electrode has been investigated by in situ isotope-edited (H/D and (63)Cu/(65)Cu) surface enhanced Raman spectroscopy (SERS) in aqueous solutions at physiological pH (7.0) in a potential window from -0.500 to -1.100 V. Theoretical modeling by DFT calculations at the B3LYP/6-311++G(d,p) level for light atoms and LANL2DZ with ECP for copper atoms have been employed for the interpretation of experimental data. The copper surface was modeled by a cluster of 6 atoms. It was found that the imidazole ring adopts Tautomer-I form in the adsorbed state and coordinates with the Cu surface through the N3 atom. Linear potential-dependence of ν(C4=C5) mode with the slope of (15 ± 1) cm(-1) V(-1) was experimentally observed. The imidazole ring mode near 1492 cm(-1) primarily due to ν(C2-N3) + β(C2H) vibration has also showed a considerable decrease in frequency at more negative electrode potentials with the slope of (9 ± 2) cm(-1) V(-1). Both modes can be used as sensitive probes for analysis of interaction of the imidazole ring with the metal surface. In agreement with experimental data theoretical modeling has predicted higher stability of surface bound Tautomer-I compared with Tautomer-II. The formation of a covalent bond between the metal and adsorbate was experimentally evidenced by metal isotopic ((63)Cu/(65)Cu) frequency shift of ν(Cu-N) mode at 222 cm(-1), combined with theoretical modeling of the surface complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copper recovery from thickener overflow by electrocoagulation/flotation: optimization of response surface, modeling, and sludge study

The electrocoagulation/flotation process is a novel approach in mining industry that is implemented to return Cu metal to the production cycle, which improves copper recovery and reduces waste water. In this research work, the response surface methodology was applied to optimize the factors effective in Cu metal recovery and sludge volume produced from thickener overflow. To this end, the D-opt...

متن کامل

CORROSION INHIBITION OF COPPER IN ACID MEDIUM BY DRUGS: EXPERIMENTAL AND THEORETICAL APPROACHES

The inhibition performances of nafcillin (III), methicillin (II) and penicillin G (I) on the corrosion of copper in HCl was studied and tested by weight loss, Tafel polarization, SEM, UV-vis spectrophotometry, molecular dynamics method and quantum chemical calculations. Polarization curves indicated that the studied inhibitors act as mixed-type inhibitors. The values of inhibition efficiency an...

متن کامل

Application of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol

Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...

متن کامل

Determination of Copper Content of Human Blood Plasma by an Ion Selective Electrode based on a New Copper-Selectophore

A new selectophore was introduced for Cu2+ ions. Spectroscopic studies showed a selectivity of a new organic compound (L) toward copper ions and several transitional metal ions. Hence, L was utilized in designing several ion selective electrodes for these cations. In practice, Cu2+ ion selective electrode behaved Nernstian (slope of 27.95±0.3 mV decade-1) over a...

متن کامل

Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries

Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 25  شماره 

صفحات  -

تاریخ انتشار 2015